
Auto-homeomorphism Examples for [0,∞)

For n ∈ lN with n ≥ 2, the nth root function is an auto-homeomorphism on [0,∞)
with the usual topology. This section first identifies a totally bounded uniformity U for
[0,∞) such that each nth root function is uniformly continuous but not a unimorphism.
Using a construction from [4] and a supremum, a totally bounded uniformity V for [0,∞)
is constructed such that each nth root function is a unimorphism. The compactification
class corresponding to V is not the class of the Stone-Čech compactification.

An Example Generalized

In the first added subsection of [4] a totally bounded uniformity is constructed on
(1,∞) such that the homeomorphism x 7→√

x is uniformly continuous but not a unimor-
phism. That this construction can be easily modified for any nth root on [0,∞) is shown
in detail in what follows. For all n, the same totally bounded uniformity is used on [0,∞):
the uniformity generated by proximal covers from the absolute value uniformity.

Given a uniform space (X,U) and S ⊆ X, US will denote the subspace uniformity for
S from U . If d is a pseudo-metric on X, Ud denotes the uniformity on X generated by d.
For S, T ⊆ X with S 6= ∅ and T 6= ∅, dist(S, T ) = inf{d(s, t) : s ∈ S, t ∈ T}.

Lemma R34.1.1 Let (X,U) and (Y,V) be uniform spaces and let f : X → Y . Assume
X = A ∪ B, f |A : (A,UA) → (Y,V) is uniformly continuous, and f |B : (B,UB ) → (Y,V)
is uniformly continuous. If there is U0 ∈ U such that U0 ∩ ((A − B) × (B − A)) = ∅, then
f : (X,U) → (Y,V)is uniformly continuous.

Proof: Assume U0 exists and let V ∈ V . By hypothesis, there exist U1, U2 ∈ U
such that U1 ∩ (A × A) ⊆ (f |A × f |A)−1[V ] and U2 ∩ (B × B) ⊆ (f |B × f |B)−1[V ]. Let
U = U0 ∩ (U0)

−1 ∩U1 ∩U2, which is in U . Let (s, t) ∈ U . If {s, t} ⊆ A, (s, t) ∈ U1. By the
choice of U1, (f(s), f(t)) ∈ V . Similarly, if {s, t} ⊆ B, then (f(s), f(t)) ∈ V . Now assume
{s, t} 6⊆ A and {s, t} 6⊆ B. Then, because X = A ∪ B, (s, t) ∈ ((A − B) × (B − A)) or
(t, s) ∈ ((A − B) × (B − A)). Since (s, t) and (t, s) are in U0 ∩ (U0)

−1, this contradicts
the choice of U0 and so the third case cannot occur. Thus U ⊆ (f × f)−1 [V ] and so f is
uniformly continuous.

Corollary R34.1.2 Let X be a set and d a pseudo-metric on X. Let (Y,V) be a
uniform space and let f : X → Y . Assume X = A∪B and that f |A and f |B are uniformly
continuous with the subspace uniformities from Ud on A and B. Suppose A − B 6= ∅ and
B − A 6= ∅. If dist(A − B,B −A) > 0, then f : (X,Ud) → (Y,V) is uniformly continuous.

Proof: Let δ = dist(A − B,B − A) > 0. Then Vδ ∈ Ud. If (r, s) is a point in
Vδ ∩ ((A−B)× (B −A)), then d(r, s) < δ, which contradicts the definition of the infimum.
Thus Vδ ∩ ((A −B) × (B − A)) = ∅ and the conclusion follows from the lemma.

Note that that the corollary can be derived easily with a routine ε, δ argument. If
A − B = ∅ or B − A = ∅, uniform continuity follows because A = X or B = X.

The following notation will be in the rest of this section. Ua denotes the uniformity on
[0,∞) generated by the absolute value metric. For n ∈ lN with n ≥ 2, rn : [0,∞) → [0,∞)
by rn(x) = n

√
x and pn : [0,∞) → [0,∞) by pn(x) = xn. From calculus rn and pn are

continuous. Clearly, rn ◦ pn and pn ◦ rn equal the identity function on [0,∞) so that rn is
an autohomeomorphism of [0,∞) with inverse function pn.
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Lemma R34.1.3 Let n ∈ lN with n ≥ 2. Then rn : ([0,∞),Ua) → ([0,∞),Ua) is
uniformly continuous.

Proof: The continuity of rn and the compactness of [0, 2] imply that rn|[0,2] is uni-

formly continuous. For x > 0 the derivative r′n(x) is 1

n
n
√

xn−1
, which is decreasing. On

[1,∞) the maximum value of r′n is 1
n
. By the Mean Value Theorem, for x, y ∈ [1,∞) thre is

m between x and y such that rn(x)−rn(y) = r′n(m)(x−y). Thus |rn(x)−rn(y)| ≤ 1
n
|x−y|,

which implies that rn|[1,∞) is uniformly continuous. R34.1.2 applies with A = [0, 2] and
B = [1,∞). Thus rn : ([0,∞),Ua) → ([0,∞),Ua) is uniformly continuous.

For the rest of this section let U denote the uniformity on [0,∞) generated by the
Ua-proximal covers. As shown in R8.Add.5, U is totally bounded and contained in Ua, snd
τ (U) = τ (Ua).

Proposition R34.1.4 Let n ∈ lN with n ≥ 2. Then rn : ([0,∞),U) → ([0,∞),U) is
uniformly continuous.

Proof: This follows from the previous lemma and R32.Add.2.
Recall that xn − yn = (x − y)Σn−1

i=0 xiyn−1−i and write qn(x, y) = Σn−1
i=0 xiyn−1−i.

Lemma R34.1.5 Let n be a positive integer with n ≥ 2.
Then limj→∞ qn( n

√
2j + 1.5, n

√
2j + 0.5) = ∞.

Proof: Since the coefficients of qn(x, y) are all 1, for x, y > 0, qn(x, y) ≥ xn−1. If
x ≥ 1 also, qn(x, y) ≥ x. Combining this with the fact that limj→∞

n
√

2j + 1.5 = ∞ yields
the conclusion.

Proposition R34.1.6 Let n ∈ lN with n ≥ 2. Then pn is not uniformly continuous
from ([0,∞),U) to ([0,∞),U).

Proof: Let B1 = [0, 2]∪(∪∞
i=1[2i+1, 2i+2] and B2 = [0,∞)−B1 = ∪∞

i=1(2i, 2i+1). By
definition {V0.1[B1], V0.1[B2]} is a Ua-proximal cover and so an element of U can be defined
by W = (V0.1[B1]× V0.1[B1])∪ (V0.1[B2]×V0.1[B2]). It will be shown that (pn × pn)−1[W ]
is not in U . Let γ < 0. By the previous lemma there is N ∈ lN such that

1

qn( n
√

2N + 1.5, n
√

2N + 0.5)
< γ.

Let s = n
√

2N + 1.5 and t = n
√

2N + 0.5. Note that sn is in B1 but not in V0.1[B2]. Also
tn is in B2 but not in V0.1[B1]. Thus (sn, tn) /∈ W . Since |sn − tn| = |s − t|qn(s, t) and
|sn − tn| = 1, by the choice of N , |s − t| = 1

qn(s,t) < δ, i.e., (s, t) ∈ Vδ. Thus Vδ is not

a subset of (pn × pn)−1[W ] for any δ > 0, i.e., (pn × pn)−1[W ] /∈ Ua. Since U ⊆ Ua,
(pn × pn)−1[W ] /∈ U . Thus the conclusion holds.

Corollary R34.1.7 Let n ∈ lNwith n ≥ 2. Then the homeomorphism rn is uniformly
continuous from ([0,∞),U) to ([0,∞),U) but not a unimorphism.

Proof: Since pn is the inverse function of rn, this follows from R34.1.4 and R34.1.6.
Corollary R34.1.8 Let n ∈ lN with n ≥ 2 and let (Y, f) be a compactification of

[0,∞) in the class corresponding to U . Then the homeomorphim rn extends continuously
to Y but the extension is not a homeomorphism of Y .

Proof: By R7.1.3 and R34.1.4 rn extends continuously. By R34.1.7 and R32.1.2 the
extension is not a homeomorphism of Y .
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The Uniformity V

For the rest of this section, for n ∈ lN with n ≥ 2, Vn(U) will denote Vrn
(U), the

separated and totally bounded uniformity on [0,∞) generated from rn and U as in R32.2.14.
V will denote ∨{Vn(U) : n ≥ 2}.

Note that U ⊆ V so that V is separable. By P2.13, P2.14, and R32.2.15 V is totally
bounded and τ (V) = τ (U), the usual topology on [0,∞).

The next few results show that rn is a unimorphism from ([0,∞),V) to ([0,∞),V) for
all n ∈ lN with n ≥ 2

Lemma R34.2.1 Let (A,W) be a separated, totally bounded uniform space. Let f, g
be auto-homeomorphisms of (A, τ (W)) such that both f and g are uniformly continuous
relative to (A,W). If f ◦ g = g ◦ f , then g : (A,Vf (W)) → (A,Vf (W)) is uniformly
continuous.

Proof: Let V ∈ Vf (W). By R32.2.15i and R32.2.9i, there is n ∈ lN and W ∈ W such
that (fn × fn)[W ] ⊆ V . The hypothesis implies that (g × g)−1 = g−1 × g−1, and g−1

commutes with f and so with the repeated composition fn. Thus

(g × g)−1[(fn × fn)[W ] = (fn × fn)[(g × g)−1)[[W ]] ⊆ (g × g)−1[V ].

Since g is uniformly continuous by hypothesis, (g × g)−1[W ] ∈ W and so (g × g)−1[V ] is
in Imfn(W) ⊆ Vf (W). The conlusion now follows.

Corollary R34.2.2 Let m,n ∈ lN with m,n ≥ 2.
Then rn : (X,Vm(U)) → (X,Vm(U)) is uniformly continuous.

Proof: From algebra rn ◦ rm = rm ◦ rn and both are uniformly continuous relative to
(X,U). The conclusion follows from the previous lemma.

Corollary R34.2.3 Let m,n ∈ lN with m,n ≥ 2 and assume n|m.
Then pn : (X,Vm(U)) → (X,Vm(U)) is uniformly continuous.

Proof: Let m = nk, where ∈ lN and, without loss of generality, k ≥ 2. From algebra
pn = rk ◦ pm. By R32.2.15iii rm : (X,Vm(U)) → (X,Vm(U)) is a unimorphism and so
pm = r−1

m is also uniformly continuous. By R34.2.2 rk : (X,Vm(U)) → (X,Vm(U)) is
uniformly continuous. Since the composition of uniformly continuous maps is uniformly
continuous, the conclusion holds.

Lemma R34.2.4 Let (A,W) be a separated, totally bounded uniform space. Let h
be an auto-homeomorphism of (A, τ (W)) such that h is uniformly continuous relative to
(A,W). Let W1 be a uniformity for A such that W ⊆ W1 and h : (A,W1) → (A,W1) is a
unimorphism. Then Vh(W) ⊆ W1.

Proof: Let V ∈ Vh(W). By R32.2.15i there is n ∈ lN such that V ∈ Imn
h(W), which is

Imhn (W) by R32.2.9i. By definition R32.2.1 there is W ∈ W such that (hn ×hn)[W ] ⊆ V .
By hypothesis W ∈ W1 and h (and so the repeated composition hn) is a unimorphism
relative to W1. Thus (hn × hn)[W ] and the superset V are in W1.

The previous lemma could also be expressed by saying Vh(W) is the smallest unifor-
mity for A which contains W and makes h a unimorphism.

Corollary R34.2.5 Let m,n ∈ lN with m,n ≥ 2 and assume n|m.
Then Vn(U) ⊆ Vm(U).
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Proof: By R34.2.2 rn : (X,Vm(U)) → (X,Vm(U)) is uniformly continuous and by
R34.2.3 r−1

n = pn : (X,Vm(U)) → (X,Vm(U)) is uniformly continuous. Thus rn is a
unimorphism relative to Vm(U). Since U ⊆ Vm(U), R32.2.4 can be applied to obtain the
conclusion.

Corollary R34.2.6 V = ∪{Vn(U) : n ≥ 2}.
Proof: The supremum automatically contains the union. A basic entourage for the

supremum is a finite intersection of the form ∩ t
i=1Vn(i) where Vn(i) ∈ Vn(i)(U) for 1 ≤ i ≤ t.

Let m = Π t
i=1n(i). By R34.2.5 Vn(i) ∈ Vm(U) for any i, as is the finite intersection. Since

the union contains every basic entourage and is closed for supersets, V is contained in the
union.

Proposition R34.2.7 Let n ∈ lN with n ≥ 2. Then rn : (X,V) → (X,V) is a
unimorphism.

Proof: By R34.2.2 rn : (X,Vm(U)) → (X,Vm(U)) is uniformly continuous for every
m ∈ lN with m ≥ 2. It follows that rn is also uniformly continuous relative to the
supremum, V . Now let V ∈ V . By R34.2.6 there is j such that V ∈ Vj(U). By R34.2.3
pn : (X,Vnj(U)) → (X,Vnj(U)) is uniformly continuous. Since Vj(U) ⊆ Vnj(U), by
uniform continuity (pn × pn)−1[V ] ∈ Vnj(U) ⊆ V . Thus pn : (X,V) → (X,V) is uniformly
continuous. Since r−1

n = pn, the conclusion follows.
Corollary R34.2.8 Let W be a uniformity for X such that rn : (X,W) → (X,W) is

uniformly continuous for all n ∈ lN with n ≥ 2 and U ⊆ W. Then V ⊆ W.
Proof: By R34.2.4 Vn(U) ⊆ W for all n ∈ lN with n ≥ 2, i.e., W is an upper bound of

the collection. Since V is the least upper bound, V ⊆ W.
In other words, V is the smallest uniformity containing U and making every rn a

unimorphism.
Finally it will be shown that the separated totally bounded uniformity V does not

correspond to the class of the Stone-Čech compactification.
For the rest of this section g : X → X will denote the exponential function restricted

to X, i.e., g(x) = ex and W will denote the element of U described in the proof of R34.1.6:
Let B1 = [0, 2] ∪ (∪∞

i=1[2i + 1, 2i + 2] and B2 = [0,∞) − B1 = ∪∞
i=1(2i, 2i + 1). By

definition {V0.1[B1], V0.1[B2]} is a Ua-proximal cover and so an element of U can be defined
by W = (V0.1[B1] × V0.1[B1]) ∪ (V0.1[B2] × V0.1[B2]).

It will be shown that (g × g)−1[W ] /∈ V . The following calculation will be needed.
Lemma R34.2.9 Let k be a fixed element of lN .

Then limn→∞([ln(2n + 1.5)]k − [ln(2n + 0.5)]k) = 0.
Proof: By the Mean Value Theorem

[ln(2n + 1.5)]k − [ln(2n + 0.5)]k =
k[ln(m)]k−1

m
(ln(2n + 1.5) − ln(2n + 0.5)),

where m is between 2n + 1.5 and 2n + 0.5. As n → ∞, m → ∞. By induction and

l’Hôpital’s rule, limm→∞
k[ln(m)]k−1

m
= 0. The second factor on the right is ln(2n+1.5

2n+0.5),
which tends to ln 1 as n → ∞. The conclusion follows.

Note that two binary operations are being used here, function composition and mul-
tiplication of real numbers, and so exponents need to be interpreted appropriately. In
the previous lemma k is a multiplicative exponent, while in the next lemma rj

m refers to
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repeated composition. Both might occur in the same sentence, e.g., rj
m(x) is the mjth root

in [0,∞) of x.
Lemma R34.2.10 (g × g)−1[W ] /∈ V .
Proof: Suppose (g × g)−1[W ] ∈ V . By R32.4.6 it is in Vm(U) for some m. By

R32.2.9i and R32.2.15i (g× g)−1[W ] is in Imr
j
m

(U) for some j. By the definitions of U and

an image uniformity, there is {A1, . . . , At}, a finite cover of X, and δ > 0 such that, for
W1 = ∪t

s=1(Vδ[As]×Vδ[As]), (rj
m×rj

m)[W1] ⊆ (g×g)−1[W ]. {As∩Bi : 1 ≤ s ≤ t, 1 ≤ i ≤ 2}
is also a finite cover of X. For W2 = ∪{(Vδ[As ∩Bi]× Vδ[As ∩Bi]) : 1 ≤ s ≤ t, 1 ≤ i ≤ 2},
W2 ∈ U and (rj

m × rj
m)[W2] ⊆ (rj

m × rj
m)[W1]. By R34.2.9 there is N ∈ lN such that

[ln(2N + 1.5)]m
j − [ln(2N + 0.5)]m

j

< δ and so ([ln(2N + 1.5)]m
j

, [ln(2N + 0.5)]m
j

) ∈ Vδ.

Pick s, i so that [ln(2N+1.5)]m
j ∈ As∩Bi. Then ([ln(2N+1.5)]m

j

, [ln(2N+0.5)]m
j

) ∈ W2.
Because rj

m(x) is the mjth root, (rj
m × rj

m)[W2] ⊆ (g × g)−1[W ], and the exponential and
natural logarithm are inverse functions, (2N + 1.5, 2N + 0.5) ∈ W . Clearly, 2N + 1.5 is
in B1 but not V0.1[B2] and 2N + 0.5 is in B2 but not V0.1[B1]. By the definition of W ,
(2N + 1.5, 2N + 0.5) /∈ W , a contradiction.

Corollary R34.2.11 The function g is not uniformly continuous from (X,V) to
(X,V).

Proof: W is in V but (g × g)−1[W ] /∈ V .
Corollary R34.2.12 Let (Y, f) be a T2-compactification of (X, τ (V)) in the class

corresponding to V . Then g does not have a continuous extension from Y to Y .
Proof: By R7.Add.7 g extends continuously to Y if and only if it is uniformly contin-

uous from (X,V) to (X,V). That and the corollary imply that g does not extend.
Corollary R34.2.13 Let (Y, f) be a T2-compactification of (X, τ (V)) in the class

corresponding to V . Then (Y, f) is not equivalent to the Stone-Čech compactification.
Proof: Every continuous map from (X, τ (V)) to (X, τ (V)) extends continuously to any

compactification equivalent to the Stone-Čech compactification. Since τ (V) is the usual
topology for X, g is continuous. By the previous corollary g does not extend continuously
to Y . The conclusion follows.

Albert J. Klein 2024
http://www.susanjkleinart.com/compactification/

References

1. This website, P2: Uniform Spaces

2. This website, R7: Uniform Continuity and Extension of Maps

3. This website, R8: Lattice and Semi-Lattice Properties

4. This website, R32: Extensions of Auto-homeomorphisms

5


