Auto-homeomorphism Examples for [0, c0)

For n € IN with n > 2, the nth root function is an auto-homeomorphism on [0, c0)
with the usual topology. This section first identifies a totally bounded uniformity U for
[0,00) such that each nth root function is uniformly continuous but not a unimorphism.
Using a construction from [4] and a supremum, a totally bounded uniformity V for [0, co)
is constructed such that each nth root function is a unimorphism. The compactification
class corresponding to V is not the class of the Stone-Cech compactification.

An Example Generalized

In the first added subsection of [4] a totally bounded uniformity is constructed on
(1,00) such that the homeomorphism z ++/z is uniformly continuous but not a unimor-
phism. That this construction can be easily modified for any nth root on [0, c0) is shown
in detail in what follows. For all n, the same totally bounded uniformity is used on [0, c0):
the uniformity generated by proximal covers from the absolute value uniformity.

Given a uniform space (X,U) and S C X, Us will denote the subspace uniformity for
S from U. If d is a pseudo-metric on X, Uy denotes the uniformity on X generated by d.
For S, T C X with S # () and T # 0, dist(S,T) = inf{d(s,t) : s € S,t € T}.

Lemma R34.1.1 Let (X,U) and (Y, V) be uniform spaces and let f : X — Y. Assume
X =AUB, fla: (AUs) — (Y,V) is uniformly continuous, and f|p : (B,Us) — (Y, V)
is uniformly continuous. If there is Uy € U such that Uy N ((A — B) x (B — A)) = 0, then
f(X,U) — (Y,V)is uniformly continuous.

Proof: Assume Uy exists and let V' € V. By hypothesis, there exist U;,Us € U
such that Uy N (A x A) C (fla x fla)"t[V] and Us N (B x B) C (f|s x f|lg)"'[V]. Let
U =UyN (Up)~ ' NU; NUs, which is in Y. Let (s,t) € U. If {s,t} C A, (s,t) € Uy. By the
choice of U1, (f(s), f(t)) € V. Similarly, if {s,t} C B, then (f(s), f(t)) € V. Now assume
{s,t} € A and {s,t} € B. Then, because X = AU B, (s,t) € (A—B) x (B—A)) or
(t,s) € ((A— B) x (B — A)). Since (s,t) and (¢,s) are in Uy N (Up) ™!, this contradicts
the choice of Uy and so the third case cannot occur. Thus U C (f x f)~![V] and so f is
uniformly continuous.

Corollary R34.1.2 Let X be a set and d a pseudo-metric on X. Let (Y,V) be a
uniform space and let f : X — Y. Assume X = AU B and that f|4 and f|p are uniformly
continuous with the subspace uniformities from #; on A and B. Suppose A — B # () and
B—A#0). Ifdist(A— B,B— A) >0, then f: (X,Uy) — (Y,V) is uniformly continuous.

Proof: Let 6 = dist(A — B,B — A) > 0. Then V; € Uy. If (r,s) is a point in
VsN((A—B) x (B —A)), then d(r, s) < §, which contradicts the definition of the infimum.
Thus Vs N ((A — B) x (B — A)) = () and the conclusion follows from the lemma.

Note that that the corollary can be derived easily with a routine ¢,d argument. If
A—B=0or B— A=1(, uniform continuity follows because A = X or B = X.

The following notation will be in the rest of this section. U, denotes the uniformity on
[0,00) generated by the absolute value metric. For n € IN with n > 2, r, : [0, 00) — [0, 00)
by r,(x) = /z and p, : [0,00) — [0,00) by p,(z) = z™. From calculus r, and p, are
continuous. Clearly, r,, o p,, and p,, o7, equal the identity function on [0, 00) so that r, is
an autohomeomorphism of [0, c0) with inverse function p,,.
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Lemma R34.1.3 Let n € IN with n > 2. Then 7, : ([0,00),U,) — ([0,00),U,) is
uniformly continuous.
Proof: The continuity of r,, and the compactness of [0, 2] imply that r,|j2 is uni-

. . . . 1 . . .
formly continuous. For z > 0 the derivative 7} (z) is T which is decreasing. On

[1,00) the maximum value of 7/, is % By the Mean Value Theorem, for z,y € [1,00) thre is
m between z and y such that 7, (z) —r, (y) = r},(m)(z—y). Thus |r,(z)—r.(y)| < Z|z—y|,
which implies that r,[[1 o) is uniformly continuous. R34.1.2 applies with A = [0,2] and
B =[1,00). Thus ry, : ([0,00),U,) — ([0, 00),U,) is uniformly continuous.

For the rest of this section let U denote the uniformity on [0,00) generated by the
U,-proximal covers. As shown in R8.Add.5, I/ is totally bounded and contained in U, , snd
TU) = T1(U,).

Proposition R34.1.4 Let n € IN with n > 2. Then r, : ([0, 00),U) — ([0, 00),U) is
uniformly continuous.

Proof: This follows from the previous lemma and R32.Add.2.

Recall that 2™ — y" = (v — y) X1 le’y” 1= and write g (x,y) = XI- le’y” 1=,

Lemma R34.1.5 Let n be a positive integer with n > 2.

Then lim;_, o ¢n(/2j + 1.5, {/2j + 0.5) =

Proof: Since the coefficients of q,(x,y) are all 1, for x,y > 0, g,(z,y) > 2"~ 1. If
x > 1 also, ¢n(z,y) > x. Combining this with the fact that lim;_,o, {/2j + 1.5 = oo yields
the conclusion.

Proposition R34.1.6 Let n € IN with n > 2. Then p,, is not uniformly continuous
from ([0, 00),U) to ([0, 00),U).

Proof: Let By = [0,2]U(U2,[2i+1,2i+2] and By = [0,00)— By = U2, (2i,2i+1). By
definition {Vj.1[B1], Vb.1[B2]} is a U,-proximal cover and so an element of U can be defined
by W = (Vo,l[Bl] X Vo.l[Bl]) U (V().l[BQ] X Vo.l[BQ]). It will be shown that (pn X pn)_l[W]
is not in Y. Let v < 0. By the previous lemma there is N € IN such that

1
4n (2N + 1.5, /2N + 0.5)

<7.

Let s = /2N + 1.5 and t = /2N + 0.5. Note that s™ is in B; but not in Vj 1[B2]. Also
t" is in By but not in Vp 1[B1]. Thus (s",t") ¢ W. Since [s" — t"| = |s — t|qn(s,t) and
|s™ —t"| = 1, by the choice of N, |s —t| = ﬁ < 9, i.e., (s,t) € V5. Thus Vj is not
a subset of (p, X pn) " [W] for any § > 0, i.e., (pn X pn) W] & U,. Since U C U,,
(pn X pn) W] & U. Thus the conclusion holds.

Corollary R34.1.7 Let n € Nwith n > 2. Then the homeomorphism 7, is uniformly
continuous from ([0, 00),U) to ([0,00),U) but not a unimorphism.

Proof: Since p,, is the inverse function of r,, this follows from R34.1.4 and R34.1.6.

Corollary R34.1.8 Let n € IN with n > 2 and let (Y, f) be a compactification of
[0,00) in the class corresponding to Y. Then the homeomorphim 7, extends continuously
to Y but the extension is not a homeomorphism of Y.

Proof: By R7.1.3 and R34.1.4 r, extends continuously. By R34.1.7 and R32.1.2 the
extension is not a homeomorphism of Y.



The Uniformity V

For the rest of this section, for n € IN with n > 2, V,, (/) will denote V,. (U), the
separated and totally bounded uniformity on [0, 00) generated from 7, and U as in R32.2.14.
V will denote V{V,(U) : n > 2}.

Note that & C V so that V is separable. By P2.13, P2.14, and R32.2.15 V is totally
bounded and 7(V) = 7(U), the usual topology on [0, c0).

The next few results show that r,, is a unimorphism from ([0, o), V) to (|0, c0), V) for
all n € N with n > 2

Lemma R34.2.1 Let (A, W) be a separated, totally bounded uniform space. Let f, g
be auto-homeomorphisms of (A, 7(W)) such that both f and g are uniformly continuous
relative to (A, W). If fog = go f, then g : (A, Vy(W)) — (A4,V¢(W)) is uniformly
continuous.

Proof: Let V € V¢(W). By R32.2.151 and R32.2.9i, there is n € INand W € W such
that (f™ x f*)[W] C V. The hypothesis implies that (g x g)”! = g71 x g7, and ¢g~*
commutes with f and so with the repeated composition f”. Thus

(9% g) 7 (" x W] = (f" x fM)(g x 9)" DIV S (g x 9)"'[V].

Since g is uniformly continuous by hypothesis, (g x g)"1[W] € W and so (g x g)"}[V] is
in Im ¢ (W) C V¢(W). The conlusion now follows.

Corollary R34.2.2 Let m,n € IN with m,n > 2.

Then r,, : (X, Vi (U)) — (X, Vin(Y)) is uniformly continuous.

Proof: From algebra r,, o7r,, = r, o7, and both are uniformly continuous relative to
(X,U). The conclusion follows from the previous lemma.

Corollary R34.2.3 Let m,n € IN with m,n > 2 and assume n|m.

Then p, : (X, Vn(U)) — (X, V,(U)) is uniformly continuous.

Proof: Let m = nk, where € IN and, without loss of generality, k£ > 2. From algebra
Pn = Tk © Pm. By R32.2.15iii 7y, @ (X, Vi (U)) — (X, Vi (Y)) is a unimorphism and so
pm = 7,1 is also uniformly continuous. By R34.2.2 ry : (X, V,(U)) — (X, Vi (U)) is
uniformly continuous. Since the composition of uniformly continuous maps is uniformly
continuous, the conclusion holds.

Lemma R34.2.4 Let (A,WV) be a separated, totally bounded uniform space. Let h
be an auto-homeomorphism of (A, 7(W)) such that A is uniformly continuous relative to
(A, W). Let W; be a uniformity for A such that W C W), and h: (A, W) — (A, W1) is a
unimorphism. Then V(W) C W.

Proof: Let V € V,(W). By R32.2.15i there is n € IN such that V' € Im} (W), which is
Imp» (W) by R32.2.9i. By definition R32.2.1 there is W € W such that (A" x h™)[W] C V.
By hypothesis W € W, and h (and so the repeated composition h™) is a unimorphism
relative to Wi. Thus (h™ x h™)[W] and the superset V' are in W.

The previous lemma could also be expressed by saying Vj,(W) is the smallest unifor-
mity for A which contains YW and makes h a unimorphism.

Corollary R34.2.5 Let m,n € IN with m,n > 2 and assume n|m.

Then V,,(U) C Vi (U).



Proof: By R34.2.2 r, : (X, Vin(UU)) — (X, V,n(Y)) is uniformly continuous and by
R34.2.3 r;t = p, ¢ (X,VmU)) — (X, Vi (U)) is uniformly continuous. Thus 7, is a
unimorphism relative to V,,(U). Since U C V,,,(U), R32.2.4 can be applied to obtain the
conclusion.

Corollary R34.2.6 V = U{V,,({) : n > 2}.

Proof: The supremum automatically contains the union. A basic entourage for the
supremum is a finite intersection of the form miglvn(i) where V;,;) € Vy(iy(U) for 1 < i <.
Let m = ILY n(i). By R34.2.5 V,,(;) € Vi (U) for any 4, as is the finite intersection. Since
the union contains every basic entourage and is closed for supersets, V is contained in the
union.

Proposition R34.2.7 Let n € IN with n > 2. Then r, : (X,V) — (X,V) is a
unimorphism.

Proof: By R34.2.2 r, : (X, V,,(U)) — (X, Vi (Uf)) is uniformly continuous for every
m € IN with m > 2. It follows that r, is also uniformly continuous relative to the
supremum, V. Now let V' € V. By R34.2.6 there is j such that V € V;(/). By R34.2.3
pn ot (X, Vi (U)) — (X, Vy;(U)) is uniformly continuous. Since V;(U) C V,;(U), by
uniform continuity (p, X pp) V] € V(U) C V. Thus p, : (X,V) — (X,V) is uniformly
continuous. Since r; ! = p,, the conclusion follows.

Corollary R34.2.8 Let W be a uniformity for X such that r, : (X, W) — (X, W) is
uniformly continuous for all n € IN with n > 2 and &/ C W. Then V C W.

Proof: By R34.2.4 V,,(U) C W for all n € IN with n > 2, i.e., YW is an upper bound of
the collection. Since V is the least upper bound, V C W.

In other words, V is the smallest uniformity containing &4/ and making every r, a
unimorphism.

Finally it will be shown that the separated totally bounded uniformity V does not
correspond to the class of the Stone-Cech compactification.

For the rest of this section g : X — X will denote the exponential function restricted
to X, i.e., g(x) = e and W will denote the element of U described in the proof of R34.1.6:
Let By = [0,2] U (U24[2i + 1,2i + 2] and By = [0,00) — By = U2,(2¢,2¢ + 1). By
definition {Vj.1[B1], Vb.1[B2]} is a U,-proximal cover and so an element of U can be defined
by W = (Vo.1[B1] x Voa[Bi]) U (Vo1 [B2] x Vo.1[Ba)).

It will be shown that (g x g)~}[W] ¢ V. The following calculation will be needed.

Lemma R34.2.9 Let k be a fixed element of IN .

Then lim,_ o ([In(2n + 1.5)]* — [In(2n + 0.5)]%) = 0.

Proof: By the Mean Value Theorem

ko k[n(m)]*~*

[In(2n + 1.5)]% — [In(2n + 0.5)] -

(In(2n + 1.5) — In(2n + 0.5)),

where m is between 2n + 1.5 and 2n + 0.5. As n — oo, m — oo. By induction and

Elln(m)]* 2n+15)
2n+0.5/?

I’Hopital’s rule, lim,,— o - = 0. The second factor on the right is In(
which tends to In1 as n — oco. The conclusion follows.

Note that two binary operations are being used here, function composition and mul-
tiplication of real numbers, and so exponents need to be interpreted appropriately. In
the previous lemma k is a multiplicative exponent, while in the next lemma 77 refers to
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repeated composition. Both might occur in the same sentence, e.g., 77 (z) is the m/th root
in [0, c0) of x.

Lemma R34.2.10 (g x g)"[W] ¢ V.

Proof: Suppose (g x g)"'[W] € V. By R32.4.6 it is in V,,(U) for some m. By
R32.2.9i and R32.2.15i (g x g) " }[W] is in Im,; (U) for some j. By the definitions of ¢/ and
an image uniformity, there is {A1,..., A;}, a finite cover of X, and § > 0 such that, for
Wi = Uty (Va[A] X Va[AL]), (1 x3,)W1] € (959) 1 [W]. {ANB; : 1 <5 <t,1<i<2)
is also a finite cover of X. For Wy = U{(V5[As N B;] x V5s[AsNB;]) : 1 < s <t,1<i<2},
Wo € U and (1), x rl )[Wa] C (r?, x rJ)[W1]. By R34.2.9 there is N € IN such that
[In(2N + 1.5)]™ — [In(2N + 0.5)]™" < 6 and so ([In(2N + 1.5)]"™, [In(2N + 0.5)]™) € V;.
Pick s,4 so that [In(2N +1.5)]" € A,NB;. Then ([In(2N+1.5)]™, [In(2N +0.5)]"™) € Wa.
Because 77, (x) is the m7th root, (7, x rl )[Wa] C (g x g)~![W], and the exponential and
natural logarithm are inverse functions, (2N + 1.5,2N + 0.5) € W. Clearly, 2N + 1.5 is
in By but not Vj 1[B2] and 2N + 0.5 is in By but not Vp.1[B1]. By the definition of W,
(2N 4+ 1.5,2N + 0.5) ¢ W, a contradiction.

Corollary R34.2.11 The function g is not uniformly continuous from (X,V) to
(X, V).

Proof: W isin V but (g x g)~'[W] & V.

Corollary R34.2.12 Let (Y, f) be a Ts-compactification of (X,7(V)) in the class
corresponding to V. Then g does not have a continuous extension from Y to Y.

Proof: By R7.Add.7 g extends continuously to Y if and only if it is uniformly contin-
uous from (X, V) to (X,V). That and the corollary imply that g does not extend.

Corollary R34.2.13 Let (Y, f) be a Ti-compactification of (X,7(V)) in the class
corresponding to V. Then (Y, f) is not equivalent to the Stone-Cech compactification.

Proof: Every continuous map from (X, 7(V)) to (X, 7(V)) extends continuously to any
compactification equivalent to the Stone-Cech compactification. Since 7(V) is the usual
topology for X, g is continuous. By the previous corollary g does not extend continuously
to Y. The conclusion follows.
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