Uniform Spaces

This website will use the entourage or Bourbaki approach to uniform spaces as presented in Kelley [2]. The equivalent Tukey approach via uniform coverings, which some find more intuitive, can be found in Isbell [1].

Definition P2.1 Let X be a set. A uniformity for X is \mathcal{U}, a non-empty set of relations on X, such that

i) $\forall U \in \mathcal{U}, \{(x, x) : x \in X\} \subseteq U$

ii) $U \in \mathcal{U}$ and $U \subseteq W \subseteq X \times X \Rightarrow W \in \mathcal{U}$

iii) $U \in \mathcal{U}$ and $W \in \mathcal{U} \Rightarrow U \cap W \in \mathcal{U}$

iv) $U \in \mathcal{U} \Rightarrow U^{-1} \in \mathcal{U}$

v) $U \in \mathcal{U} \Rightarrow \exists V \in \mathcal{U}$ with $V \circ V \subseteq U$

The set $\{(x, x) : x \in X\}$ may be referred to as the diagonal of X or Δ_X. The pair (X, \mathcal{U}) is called a uniform space. (X, \mathcal{U}) and the uniformity \mathcal{U} are called separated provided $\bigcap\{U : U \in \mathcal{U}\} = \Delta_X$.

A motivating example for definition P2.1 arises when X has a pseudo-metric ρ. For $\epsilon > 0$ let $V_\epsilon = \{(x, y) : \rho(x, y) < \epsilon\}$. Let $\mathcal{U}_\rho = \{U \subseteq X \times X : \exists \epsilon > 0 \text{ with } V_\epsilon \subseteq U\}$. Then \mathcal{U}_ρ is a uniformity, which is separated if and only if ρ is a metric.

Definition P2.2 Let (X, \mathcal{U}) be a uniform space. $\tau(\mathcal{U}) = \{G \subseteq X : x \in G \Rightarrow \exists U \in \mathcal{U} \text{ with } U[x] \subseteq G\}$.

$\tau(\mathcal{U})$ is a topology for X. A topological space (X, τ) is called uniformizable provided there exists a uniformity \mathcal{U} for X with $\tau(\mathcal{U}) = \tau$. When X has a pseudo-metric ρ, $\tau(\mathcal{U}_\rho)$ is the topology generated by the pseudo-metric. In general, there need not be a unique uniformity generating a given uniformizable topology. A uniformity \mathcal{U} is separated if and only if $\tau(\mathcal{U})$ is T_2.

Theorem P2.3 A topological space is uniformizable if and only if it is completely regular. It is uniformizable via a separated uniformity if and only if it is $T_{3\frac{1}{2}}$.

Proposition P2.4 Let (X, τ) be compact and T_2. Then there exists a unique uniformity \mathcal{U} such that $\tau(\mathcal{U}) = \tau$. Moreover, \mathcal{U} is the set of all neighborhoods of the diagonal in $X \times X$.

Definition P2.5 Let (X, \mathcal{U}) be a uniform space, and let $S : D \to X$ be a net. S is Cauchy if and only if $\forall U \in \mathcal{U}, \exists d_0 \in D$ so that $d, e \geq d_0 \Rightarrow (S(d), S(e)) \in U$. (X, \mathcal{U}) is complete if and only if every Cauchy net converges in $(X, \tau(\mathcal{U}))$.

Definition P2.6 Let (X, \mathcal{U}) be a uniform space. (X, \mathcal{U}) is totally bounded if and only if $\forall U \in \mathcal{U}, \exists x_1, ..., x_n \in X$ such that $X \subseteq \bigcup_{i=1}^{n} U[x_i]$.

When X has a pseudo-metric ρ, these definitions of complete and totally bounded for (X, \mathcal{U}_ρ) are equivalent to the usual definitions based on the pseudo-metric. For $A \subseteq X$, A is totally bounded provided A with the subspace uniformity from X is totally bounded. Every subset of a totally bounded set is totally bounded. If A is totally bounded, then \overline{A} is also totally bounded, where \overline{A} denotes the closure of A in $(X, \tau(\mathcal{U}))$.

Theorem P2.7 Let (X, \mathcal{U}) be a uniform space. Then $(X, \tau(\mathcal{U}))$ is compact if and only if (X, \mathcal{U}) is complete and totally bounded.

Definition P2.8 Let (X, \mathcal{U}) and (Y, \mathcal{V}) be uniform spaces, and let $f : X \to Y$. f is uniformly continuous if and only if $\forall V \in \mathcal{V}, (f \times f)^{-1}[V] \in \mathcal{U}$.

1
When X and Y have pseudo-metrics ρ and σ, uniform continuity relative to (X, U_ρ) and (Y, V_σ) is equivalent to the usual definition of uniform continuity based on the pseudo-metrics. A map f as in P2.8 is called a unimorphism provided f is a bijection, f is uniformly continuous, and f^{-1} is uniformly continuous. f is called a uniform embedding provided f is a unimorphism from X to $f[X]$, where $f[X]$ has the subspace uniformity.

Proposition P2.9 Let (X, U) and (Y, V) be uniform spaces, and let $f : X \to Y$. If f is uniformly continuous, then f is continuous relative to $(X, \tau(U))$ and $(Y, \tau(V))$. If f is continuous and $(X, \tau(U))$ is compact, then f is uniformly continuous.

Definition P2.10 Let (X, U) be a uniform space. A completion of (X, U) is a pair $((Y, V), f)$, where (Y, V) is a complete uniform space, $f : X \to Y$ is a uniform embedding, and $f[X]$ is dense in Y.

Theorem P2.11 Every uniform space has a completion. Every separated uniform space has a separated completion, which is unique up to unimorphism.

Proposition P2.12 Let $\{U_\alpha : \alpha \in \Delta\}$ be a non-empty family of uniformities on X. Then there is a uniformity U on X such that $U_\alpha \subseteq U \ \forall \alpha \in \Delta$ and, if V is a uniformity for X with $U_\alpha \subseteq V \ \forall \alpha \in \Delta$, then $U \subseteq V$.

The uniformity U is the supremum of $\{U_\alpha : \alpha \in \Delta\}$. The notations used will be $U = \bigvee \{U_\alpha : \alpha \in \Delta\}$ or $(X, U) = \bigvee \{(X, U_\alpha) : \alpha \in \Delta\}$.

Proposition P2.13 Let $\{U_\alpha : \alpha \in \Delta\}$ be a non-empty family of uniformities on X. If (X, U_α) is totally bounded $\forall \alpha \in \Delta$, then $\bigvee \{(X, U_\alpha) : \alpha \in \Delta\}$ is also totally bounded.

Proposition P2.14 Let $\{U_\alpha : \alpha \in \Delta\}$ be a non-empty family of uniformities on X. Then $\tau(\bigvee \{U_\alpha : \alpha \in \Delta\}) = \bigvee \{\tau(U_\alpha) : \alpha \in \Delta\}$.

Albert J. Klein 2003
http://www.susanjkleinart.com/compactification/

References